Introduction

Previously identified GKAs evaluated in the clinic for the treatment of Type 2 diabetes demonstrate improved glucose control; however, these GKAs also show increased incidence of hypoglycemia and hyperlipidemia and an apparent lack of durability. These liabilities have been correlated to high-stimulation of the β-cells (as could be predicted from the phenotype of patients with GK-activating mutations) and/or the accumulation of lipids in the liver (consistent with the disruption of GK and GKRP interaction by these activators). TTP399 is a liver-selective GKA that does not disrupt the interaction between GK and GKRP and has shown normalization of glycemic control in animal models and in Type 2 diabetic subjects on stable doses of Metformin.

Aim

The aim of this pilot study was to examine the safety, tolerability, pharmacokinetics (PK) and pharmacodynamics (PD) of TTP399 in subjects with T2DM that were naïve to drug treatment.

Study Design

Randomized, Double-blind, Placebo-Controlled, Multiple-ascending-dose Multicenter Trial

- Subjects in the clinic
- Day 0
- Last dose Day 10
- Cohort 1 (50 mg q.d., N=4, Day 10)
- Cohort 2 (200 mg q.d., N=6, Day 10)
- Cohort 3 (400 mg q.d., N=6, Day 10)

Pharmacokinetics

Dose-dependent improvement on postprandial glucose without increasing plasma Lactate

Conclusions

- TTP399 improved glycemic control and insulin resistance without inducing hypoglycemia or having detrimental effects in plasma lipids.
- The results confirm the safety and usefulness of liver-specific GK activators for the treatment of Type 2 Diabetes.
- The safety and the beneficial effects seen in this very mild drug-naïve diabetic population (mean A1c≤7%) suggest that TTP399 could also be used early in the disease, in prediabetes or as intensive therapy without risk of hypoglycemia.