

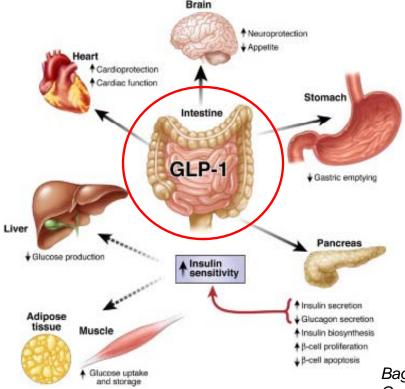
TTP273, an Orally-Available Glucagon-Like Peptide-1 (GLP-1) Agonist, Notably Reduces Glycemia in Subjects with Type 2 Diabetes Mellitus (T2DM)

STEPHANIE GUSTAVSON, AARON BURSTEIN, CARMEN VALCARCE, IMOGENE GRIMES, ADNAN MJALLI

TransTech Pharma, LLC
High Point, NC

Presenter Disclosure Information

The American Diabetes Association requires the following disclosure to the participants:


Stephanie Gustavson, PhD, MSCI

Employee of TransTech Pharma, LLC

Background

GLP-1 Receptor Agonism: a validated target

Baggio LL and Drucker DJ. 2007. Gastroenterology 132: 2131-57

- Currently marketed GLP-1 mimetics:
 - Injectable agents
 - Robust efficacy; notable gastrointestinal (GI) side effects

Expected Benefits of an Oral, Small Molecule, Non-Peptide GLP-1 Receptor Agonist

- More physiological than peptides: delivered at the site of secretion of native GLP-1 (intestine)
 - Efficacy contributions from gut (direct & indirect via neural signaling) & systemic
- Superior tolerability vs. peptide GLP-1 analogues
 - Low incidence of GI AEs
- No antibody formation
- Trend towards lowering of body weight, triglycerides, cholesterol and blood pressure
 - May reduce cardiovascular risk
- Ideal for combination with existing oral agents (including fixed-dose combinations)
- Convenience/Compliance

1st in Class: Oral, Small Molecule, Non-Peptide GLP-1R Agonists

	TTP054 (First Generation)	TTP273 (Second Generation)
Overview	★ HbA _{1c} reduction with no Gl side effect signal	Achieved POM ❖ Glucose reduction with no GI side effect signal ❖ More potent than TTP054 ❖ Appears more efficacious (based on short-term glucose lowering) than TTP054
Clinical Status	Phase 2: 3 months in patients with T2DM TTP054-201 (#156 Oral)	Phase 1: 14 days in patients with T2DM TTP273-102 (#155 Oral)

TTP273-102 Study Design

- Randomized, placebo-controlled, investigator- and patient- blind, sponsoropen, multiple dose study (14 days)
 - > TTP273 effects on safety, tolerability, PK, and PD
- Patients with T2DM on stable doses of metformin
- 3 week inpatient design
 - > Inpatient Days -5 to 16; 23-point mean daily glucose and MMTT on Days -1 & 14
 - Isocaloric diets provided/encouraged
 - > Subjects required to consume full menu Days -1 &14
- 10 cohorts; n=12 (9 active; 3 placebo) per cohort
- QD PO Dosing (6 Cohorts)
 - > 25 mg QD
 - > 50 mg QD
 - > 75 mg QD
 - > 100 mg QD
 - > 150 mg QD
 - > 450 mg QD

Alternative PO Dosing Regimens (4 Cohorts)

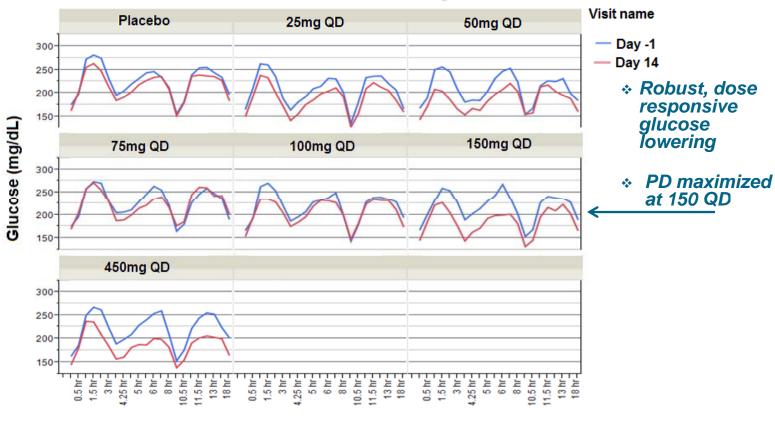
- > 75 mg QPM
- > 25 mg BID
- > 75 mg BID
- > 150 mg BID

Disposition, Demography, & Pharmacokinetics

- 112 subjects randomized/dosed at a single site
 - > N=108 completed; 4 withdrew
 - Two PBO (one AE [LFTs increased], one "other" [hyperglycemia])
 - Two actives (one AE [nausea; 75 mg QD], one "other" [death in family; 450 mg QD])
- Mean (±SD) baseline characteristics were relatively balanced amongst groups

	All Subjects	All Placebo	All Active
Sample size	112	29	83
Gender; Male (%)	59 (53%)	16 (55%)	43 (52%)
Age in yrs; Mean ± SD (Min,Max)	58 ± 6 (43,70)	57 ± 6 (44,68)	58 ± 6 (43,70)
HbA _{1c} (%); Mean ± SD (Min,Max)	8.1 ± 0.7 (6.7,9.8)	$8.4 \pm 0.8 (7.3, 9.8)$	$8.0 \pm 0.7 (6.7, 9.7)$
BMI in kg/m ² ; Mean ± SD (Min,Max)	32 ± 4 (23,43)	31 ± 4 (23,39)	32 ± 4 (23,43)

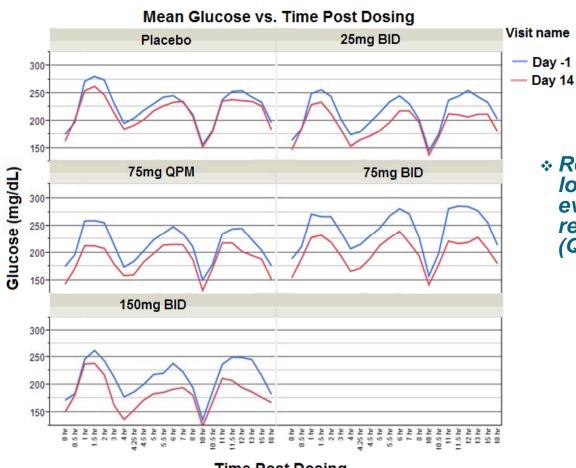
- Pharmacokinetics increased in linear, dose-responsive manner
 - Tmax ~2 hours
 - Half-life ~6 hours


Safety Summary

- All doses were safe and well tolerated
 - No SAEs
 - No hypoglycemia in any patient
 - > Two discontinuations due to an AE
 - 1 placebo: elevated LFTs
 - 1 active (75 mg QD): nausea
- AEs were generally mild and similar in incidence between placebo and active dose groups
- Small number of GI AEs: mostly mild, resolved spontaneously with continued study drug administration, no dose response relationship
 - Minimal incidence of nausea (n=4 total of 112 randomized) and vomiting (n=1), with no dose response
 - Most common GI AE was diarrhea
 - No clear dose response
 - Often occurred on meal-challenge days when the timed consumption of meals was required

24-Hour Glucose Profile: QD Dosing Regimens

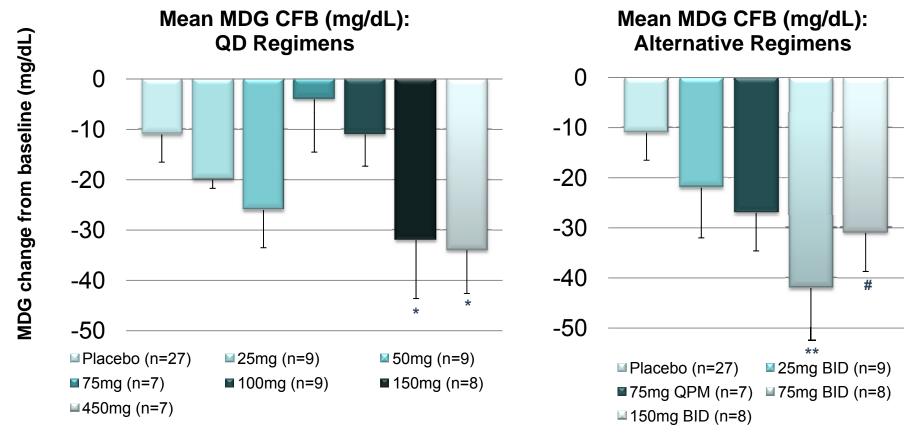
Mean Glucose vs. Time Post Dosing



Time Post Dosing

24-Hour Glucose Profile:

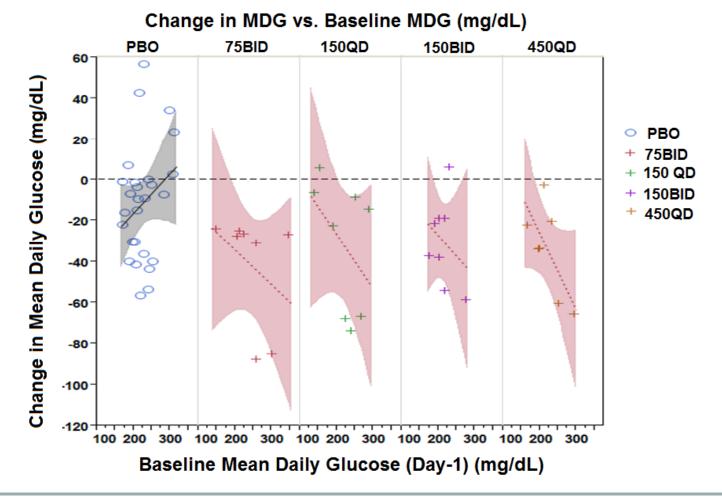
Alternative Dosing Regimens


* Robust glucose lowering with evening regimens (QPM and BID)

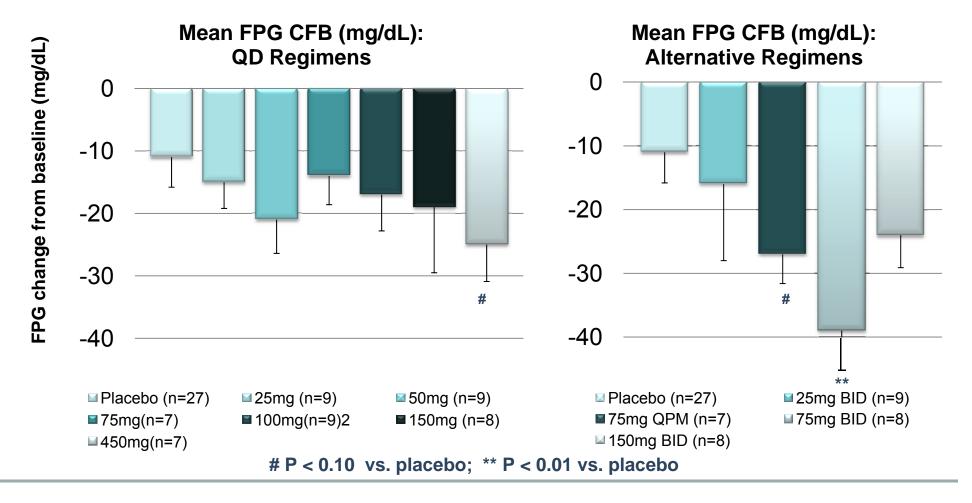
Time Post Dosing

TTP273-102 Mean Daily Glucose (MDG):

Mean Change from Baseline (CFB) after 14-days of Treatment


P < 0.10 vs. placebo; * P < 0.05 vs. placebo; ** P < 0.01 vs. placebo

MDG at Baseline Influences Response to TTP273



TTP273-102 Fasting Plasma Glucose (FPG):

Mean Change from Baseline (CFB) after 14-days of Treatment

Changes in Secondary Parameters

- Study <u>not designed</u> to assess changes in secondary parameters
 - > Strict dietary requirements, small sample size, and short duration
 - > Yet, numerical, dose-responsive changes occurring in expected direction

Body weight:

- > Trend for reduction (up to ~2 kg) in several active treatment groups vs. placebo (~0.6 kg)
- > Trend for correlation between mean daily glucose reduction and body weight reduction seen in active treatment groups (but not in placebo group)

* Blood pressure:

- > SBP: trend for reduction (up to ~8 mmHg) in several active treatment groups vs. placebo (~2 mmHg)
- DBP: trend for reduction (up to ~5 mmHg) in several active treatment groups vs. placebo (~1 mmHg)

Triglycerides:

> Trend for reduction (up to ~50 mg/dL) in several active treatment groups vs. placebo (~30 mg/dL)

TTP273-102 Summary

- TTP273 demonstrated robust effects on postprandial & fasting glucose
 - Glucose reduction (40 mg/dL in MDG and FPG) appears more pronounced than TTP054
 - Consistent with the increased in vitro potency of TTP273 vs. TTP054
 - Assessments based on TTP054 shorter-term phase 1 studies; no head-to-head comparisons [Diabetes, 2013 ADA abstract (115-OR)]
 - > Study likely underestimates maximum glycemic reduction
 - Subjects were required to consume isocaloric diets, thus any effect on food intake would not contribute to the PD response in this study
 - Notable placebo effect in the current study, that will likely wane with time (in contrast to active-treatment effects which generally do not wane)
- Secondary endpoints (BW, TG, blood pressure) tended to exhibit numerical, dose-responsive decreases despite the fact the study was not designed to assess such changes
- Negligible nausea/vomiting

Acknowledgements

- TTP Team
 - Rebhi Bsharat, PhD
 - Claude Drobnes, MD
 - > Sheila Garland
 - Pam Glynn
 - Jumana Ihbais
 - > Bashir Mansoori, PhD
 - Vanessa McDade
 - > Amanda Mitchell
 - Jane Shen, PharmD
 - Nura Strong
 - Danita Thompson

- High Point Clinical Trial Center
 - Michele Driver
 - > Melanie Fein, MD, CPI
 - Marsela Ferko
 - > Antonio Guzman
 - Nita Johnston, PharmD
 - Margarita Nunez, MD
 - Issis Pumerol
 - > Rebecca Ragan, RPh
 - Ricardo Sanchez
 - > John Wertman

Vendors

Covance (labs), CATO (data management)