Linking Diabetes and Alzheimer's Disease through RAGE. A Retrospective Analysis of Azeliragon Phase 2 and Phase 3 Studies

Carmen Valcarce, Imogene Dunn, Aaron Burstein

Disclosure

- □ Dr. Valcarce is an employee of vTv Therapeutics LLC
- □ Dr. Dunn is an employee of vTv Therapeutics LLC
- □ Dr. Burstein is an employee of vTv Therapeutics LLC

This presentation is not eligible for CME/CE

July 2019

RAGE as a Target in Humans

- **RAGE** is a 35kDa membrane protein member of the Ig supergene family
 - Expressed at low levels in healthy tissues (except skin and mucus membranes)
 - Increases in the concentration of RAGE ligands (AGEs, HMGB1, S100 and Aβ) induce RAGE expression
 - Interaction of AGEs (or other ligands) with RAGE leads to sustained cellular damage, inflammation, insulin resistance

□ RAGE in Alzheimer's disease and Diabetes

- RAGE / AGEs well established in contributing to diabetic complications
- Analysis of RAGE expression in postmortem AD brains indicated that increases in RAGE protein and percentage of RAGE-expressing microglia paralleled the severity of disease⁽¹⁾
- Patients with AD and diabetes simultaneously exhibited an increased immunostaining for RAGE protein in hippocampal regions⁽²⁾
- Strong positive microvascular RAGE immunoreactivity has been observed in AD hippocampi⁽³⁾

RAGE Azeliragon (TTP488 Modified from Sims GP. Et al. Annu. Rev Immunol. 28:367-88 (2010) **Retinal Disease Kidney Disease Diabetes** AGEs/ Stroke **RAGE** Dementia Cardiovascular Neuropathy **Wound Healing**

⁽¹⁾ Curr.Drug Targets CNS Neurol.Disord. 2005 Jun;4(3):249-66

⁽²⁾ Neurobiology of Disease 37 (2010) 67-76

⁽³⁾ Curr. Alzheimer Res. 2008 Oct; 5(5):432-7.

Hypothesis for Azeliragon's Mechanism of Action

- Activation of RAGE at BBB → TXNIP expression and resultant:
 - BBB leakage and monocyte infiltration
 - Positive feedback loop whereby activation of RAGE results in enhanced RAGE expression
 - Aβ transport from blood to brain
- RAGE activation in glial cells promoting proinflammatory gene expression
 - Increased Aβ production in brain
 - Neurotoxicity
- RAGE activation in neuronal cells
- Increased oxidative stress
- Production of M-CSF
- Inflammation
- End-result = Neurodegeneration, synaptic loss
- Antagonism of RAGE by azeliragon may reduce inflammation and improve cell survival

Perrone L et al. Int J Alzheimers Dis 2012; doi: 10.1155/2012/734956.

Phase 2 Studies in AD, Diabetic Nephropathy

Alzheimer's disease

60mg/day x 6d \rightarrow 20 mg/day x 18 months 15 mg/day x 6d \rightarrow 5 mg/day x 18 months Placebo (PBO) x 18 months

399 subjects with probable mild-moderate AD MMSE 14-26
Stable background Achel's or memantine

Primary Endpoint: ADAS-cog11

Key-secondary: none

Secondary Endpoints: MRI volumetric measures, ADCS-ADL, MMSE, NPI

Subjects with diabetes were excluded

20 mg/day discontinued at 6 months due to an increase in AEs of confusion and falls

Diabetic nephropathy

60mg/day x 6d \rightarrow 20 mg/day x 6 months Placebo (PBO) x 6 months

110 subjects with Type 2 diabetes and persistent albuminuria

Primary Endpoint: UACR

Key-secondary: none

Secondary Endpoints: eGFR, serum creatinine, markers of RAGE inhibition

Subjects with diabetes

20 mg/day completed 6 months

No increase in AEs of confusion and falls

Questions following Phase 2 Studies:

- Is the effect on cognition/function dependent on glucose levels?
- Does RAGE antagonism affect glucose metabolism?

July 2019

Phase 2b Data and Preclinical FDG-PET Support for Phase 3 Design

Phase 2b: Suggestion of potential differential response in subjects with increased fasting glucose

Implications on Phase 3 (STEADFAST) Study Design

- Allow inclusion of patients with T2D
- Include FDG-PET sub-study as translation biomarker

FDG-PET study: APP-Tg mice (>6 mo old) study

TTP488 10 mg/kg po QD or vehicle x 4 weeks

After 4 weeks treatment with TTP488 10mg/kg or vehicle (control)

Burstein et al. J Prev Alz Dis 2018;5(2):149-154

Phase 3 STEADFAST Study Design

Two Pivotal Studies Under One Protocol

5mg/day azeliragon (AZL) or
Placebo (PBO) + Standard of Care
Patients with <u>probable mild AD</u>, MMSE 21-26, CDR
global 0.5-1

Co-Primary Endpoints: ADAS-cog11 and CDR-SB

Co-Primary Endpoints to be analyzed as independent studies

Secondary Endpoints: MRI volumetric measures, FDG-PET, functional / behavioral measures, etc

Secondary Endpoints to be analyzed as one study

Patients with diabetes were permitted in the study (HbA1c ≤7.7%)

^{*}At any time during the study; referred to as ADA-T2D subgroup throughout the presentation

A-Study Failed to Demonstrate Statistically Significant Benefit of Azeliragon on Co-Primary Endpoints of ADAS-cog₁₁ and CDR-sb

A-Study Final Analysis: Full Analysis Set*, MMRM
Data reported as LSMean (SE)

□ B-Study and Open Label studies terminated at time of A-Study Top Line Results

B-Study failed to demonstrate statistically significant benefit of azeliragon on co-primary endpoints of ADAS-cog₁₁
 and CDR-sb

^{*}FAS: subjects who received ≥1 dose and had at least one post baseline efficacy assessment

Very Different Populations Between Phase 2b and Phase 3 Despite Virtually Identical Inclusion/Exclusion Criteria

Historical data from Thomas RG et al. Alz Dementia 2016

Phase 2B

- "Faster progressors"
- Placebo decline ~2x faster than historical data

Phase 3: Part A

- More "Non/slow progressors and improvers"
- Placebo decline ~1/2 that of historical data

Back to First-Principles

Phase 2B

Facts:

- □ "Faster progressors" (Placebo decline 10.5 points /18 months)
- □ Azeliragon delayed cognitive and functional decline
- □ Higher glucose predicted more pronounced response

Hypothesis:

- □ Potential **higher** concentrations of **RAGE/RAGE-ligands**
- Potentially higher degree of inflammation and cell death ongoing

Phase 3

Facts:

- □ "Non/slow progressors" (Placebo decline 3 points/18 months)
- □ Azeliragon did not affect cognitive or functional decline
- □ Patients with diabetes were included in the study

Hypothesis:

- □ Potential **lower** concentrations of **RAGE/RAGE-ligands**
- □ Potentially **lower** degree of **inflammation and cell death** ongoing

Hypothesis: High plasma concentrations of RAGE-ligands should identify responders to azeliragon

HbA1c chosen as a surrogate marker for AGEs

Post-hoc analysis of patients with HbA1c ≥ 6.5%

Potential Beneficial Effect on Cognition in Patients with Elevated HbA1c

STEADFAST A-Study (FAS)

Change from Baseline in ADAS-cog11 (LSMEANS)

STEADFAST A-Study ADA-T2D Subgroup (FAS)

Change from Baseline in ADAS-cog11 (LSMEANS)

Cognitive improvement cannot be explained by improvement in glycemic control

Analysis of Patients with Diabetes (HbA1c \geq 6.5% at anytime during the study) Results are LSMeans \pm SE based on MMRM model.

^{*}All p values are nominal. FAS =Full Analysis Set

Phase 3 A-Study: HbA1c as Biomarker to Predict Responders LSMean Change from Baseline to Month 18

Potential for greater magnitude of benefit on ADAS-cog in diabetes (HbA1c ≥ 6.5%) than in pre-diabetes (HbA1c 5.7-6.5%) and non-diabetes (HbA1c < 5.7%)

Phase 2b: HbA1c as Biomarker to Predict Responders Mean Change from Baseline to Month 18, Mild-Moderate Subjects

Potential for greater magnitude of benefit on ADAS-cog and CDR-sb in pre-diabetes (HbA1c 5.7-6.4%) than in non-diabetes (HbA1c < 5.7%)

July 2019

Phase 2b: Support for HbA1c as Biomarker to Predict Responders Mean Change from

Potential for greater magnitude of benefit on ADAS-cog and CDR-sb in pre-diabetes (HbA1c 5.7 – 6.4%) than in non-diabetes (HbA1c < 5.7%)

Effect does not appear to be driven by disease severity

Future Directions

- Identification of additional subgroups from STEADFAST Phase 3 Trial with plasma markers indicative of increased concentrations of RAGE ligands and/or increased RAGE expression
 - Analysis of baseline plasma samples from STEADFAST for markers of:
 - RAGE ligands: AGEs, HMGB1, S100
 - RAGE: sRAGE
 - Pro-inflammatory cytokines
 - Vascular injury
 - Neurodegeneration / Neural Injury: NfL
- □ TTP488-305
 - Clinical study to prospectively replicate results of post-hoc subgroup analysis from STEADFAST

TTP488-305: Two Studies Operationally Conducted Under a Single Protocol (NCT03980730)

Study Objectives:

Phase 2:

 Proof of concept study to confirm the findings from the diabetes subgroup of the STEADFAST study

Phase 3:

 Demonstrate safety and efficacy with co-primary endpoints of cognition and function to support possible registration

Phase 2

(Part 1 / Proof of Concept)

- Double-blind, placebo control
- 5mg QD or placebo for 6 months
- ~100 subjects with mild Alzheimer's disease and HbA1c ≥ 6.5%
- Primary Endpoint: ADAS-cog14
- Secondary Endpoints: CDR-sb, FAQ, Amsterdam-IADL, MMSE

Phase 3

(Design may be adjusted based on Part 1 results)

- Double-blind, placebo control
- 5mg QD or placebo for 18 months
- ~200 subjects with mild Alzheimer's disease and HbA1c ≥ 6.5%
- Co-primary Endpoints:

Cognition: ADAS-cog14

• Function: TBD

Study start: June 2019 Currently enrolling

Thank you!

We greatly appreciate all the patients, families, investigators and staff for their participation in the Phase 2b and Phase 3 STEADFAST studies