

INFLAMMATORY BIOMARKERS, BRAIN VOLUMETRIC MRI, FDG-PET RESULTS IN PATIENTS WITH TYPE 2 DIABETES IN AZELIRAGON PHASE 3 TRIAL IN MILD ALZHEIMER'S DISEASE (AD)

Carmen Valcarce, Imogene Dunn, Tom Soeder, Aaron Burstein

Disclosure

Carmen Valcarce

Full time employees of vTv Therapeutics LLC

Targeting RAGE with Azeliragon

- Azeliragon's novel MOA: antagonizing the Receptor for Advanced Glycation Endproducts (RAGE)
- RAGE is expressed at low levels in healthy tissues (except skin and mucus membranes)
- Increases in the concentration of RAGE ligands induce RAGE expression
 - In AD, increases in RAGE protein and percentage of RAGE-expressing microglia parallel the severity of disease
- The interaction of **AGEs** (or other RAGE-ligands) with **RAGE** leads to:
 - Sustained cellular damage and inflammation; and
 - Insulin resistance
- Unlike most investigational AD treatments, azeliragon does not rely on just one hypothesis (e.g., amyloid or tau), but it targets several components of AD pathology

Azeliragon Mechanism of Action

For review see Dhananjayan et al. (2018) Advance Glycation, Diabetes and Dementia https://doi.org/10.1016/B978-0-12-809454-9.00009-

RAGE Involved in Diabetic Complications and AD

Pre-clinical Evidence with Azeliragon Treatment

Animal model	Main Results: Treatment with Azeliragon	
Rat Diabetic Retinopathy	 Protection Against Vascular and Neuronal Lesions: Reduces acellular capillaries and improves pericyte/endothelial cell ratio Reduces activated microglia 	
Adriamycin Induced Mouse Nephropathy model	Protection from the Development of Massive Albuminuria, Mesangial Expansion and Glomerular Sclerosis	
Alzheimer's disease Transgenic Mouse model (human APP Swedish and London mutations)	 Reduces amyloid deposition and inflammation in the brain Increase Glucose Uptake in the brain Preserves cognitive/ behavioral function 	
C57BLKS/J-m+/+Lepr db mice (Lepr db)	Dose related decrease in wound closure time and % closure at all doses	

Phase 3 STEADFAST Study Design

Readout April 2018

Two Pivotal Studies Under One Protocol

5mg/day azeliragon (AZL) or
Placebo (PBO) + Standard of Care
Patients with <u>probable mild AD</u>, MMSE 21-26, CDR
global 0.5-1

Co-Primary Endpoints: ADAS-cog11 and CDR-SB

Co-Primary Endpoints to be analyzed as independent studies

Secondary Endpoints: MRI volumetric measures, FDG-PET, functional / behavioral measures, etc

Secondary Endpoints to be analyzed as one study

Patients with diabetes were included in the study (HbA1c ≤7.7%)

^{*}At any time during the study; referred to as ADA-T2D subgroup throughout the presentation

Potential Beneficial Effect on Cognition in Patients with Elevated HbA1c

STEADFAST A-Study (FAS)

Change from Baseline in ADAS-cog11 (LSMEANS)

STEAD FAST A-Study ADA-T2D Subgroup (FAS)

Change from Baseline in ADAS-cog11 (LSMEANS)

Results are LSMeans ± SE based on MMRM model. AD-T2D=HbA1c ≥6.5% at anytime during the study. #All p values are nominal. FAS =Full Analysis Set

Potential Beneficial Effect on Cognitive Function in Patients with Elevated HbA1c

STEADFAST A-Study (FAS)

Change from Baseline in CDR-SB

STEADFAST A-Study ADA-T2D Subgroup (FAS)

Change from Baseline in CDR-SB

Results are LSMeans ± SE based on MMRM model. AD-T2D=HbA1c ≥6.5% at anytime during the study. #All p values are nominal. FAS =Full Analysis Set

Cognitive Improvement Cannot be Explained by Improvement in Glycemic Control

STEADFAST A-Study ADA-T2D Subgroup (FAS)

Change in HbA1c (%) at Month 18

Stable therapy was required throughout the study

Insulin was not allowed

STEADFAST A-Study ADA-T2D Subgroup (FAS)

Change in Non-fasting Glucose (mg/dL) at Month 18

AD-T2D=HbA1c ≥6.5% at anytime during the study. Results are Means ± SE ,FAS = Full Analysis Set

Demography and Baseline Characteristics: No Notable Imbalance Between Treatment Arms

STEADFAST Study ADA-T2D Subgroup Demographics (A&B Studies Combined)

STEADFAST Study ADA-T2D Subgroup Baseline Characteristics (A&B Studies Combined)

	_			
Characteristic	Statistic	Placebo	Azeliragon	
		(n=43)	(n=51)	
Age (years)	Mean	78	76	
	(min-max)	(58, 91)	(58, 92)	
Sex (male)	Number (%)	37 (86%)	31 (61%)	
Race (white)	Number (%)	39 (91%)	47 (92%)	
Ethnicity (not Hispanic or Latino)	Number (%) 36 (84%)		42 (82%)	
Weight (kg)	Mean (min-max)	82	78	
		(58-110)	(52-126)	
BMI (kg/m2)	Mean (min-max)	28	27	
		(20-38)	(19-35)	
Years since diagnosis of AD	Mean (min-max)	2.5	2.6	
		(0-13)	(0-10)	
ApoE alleles (at least one copy of E4)	Number (%)	22 (51%)	25 (49%)	
Background AD:				
Memantine	Number (%)	12 (28%)	22 (43%)	
Acetylcholinesterase inhibitor	Number (%)	40 (93%)	47 (92%)	
both	Number (%)	10 (23%)	18 (35%)	

Characteristic	Chatiatia	DI I	A 1.
Characteristic	Statistic	Placebo	Azeliragon
		(n=43)	(n=51)
Baseline MMSE	Mean (min-max)	23.5	23.4
		(17-28)	(19-30)
Baseline ADAS-cog	Mean (min-max)	16.1	16.5
		(5-27)	(4-33)
Baseline CDR-sb	Mean (min-max)	4.5	4.7
		(1.0-8.0)	(1.5-9.0)
Baseline ADCS-ADL	Mean (min-max)	63	66
		(31-76)	(48-78)
Baseline NPI	Mean (min-max)	8.9	10.2
		(0-50)	(0-43)
Baseline CDR-global			
CDR-global = 0.5	Number (%)	21 (49%)	21 (41%)
CDR-global = 1	Number (%)	22 (51%)	30 (59%)

Change in MRI Brain Volume at Month 18 in the ADA-T2D Subgroup: Trend Towards Less Brain Atrophy in the AZL-treated Group

-0.5

-1.5

-2.5

Decrease

p=0.0002#

P=0.015

■ AZL (n=41) ■ PBO (n=35)

ADA-T2D Subgroup
Ventricular Enlargement (%)

ADA-T2D Subgroup Change in Total Hippocampus Volume (%)

AD-T2D=HbA1c ≥6.5% at anytime during the study.**Results are change from baseline LSMeans ± SE ANCOVA adjusted for baseline, FAS. # 1-sample test nominal significance indicating worsening. All p values are nominal

Change in FDG-PET SUVR in the ADA-T2D Subgroup: Less Reduction in Glucose Utilization in AZL-treated Group

SUVR composite (unweighted combination of frontal, anterior/posterior cingulate, lateral parietal, lateral temporal, and hippocampus)

Results are LSMeans ± SE based on MMRM model, FAS. AD-T2D=HbA1c ≥6.5% at anytime during the study. #1-sample test nominal significance indicating worsening. All p values are nominal

Inflammatory Marker Panel: Changes at Month 18 of Treatment in ADA-T2D Subgroup

- Inflammatory biomarkers were measured in plasma using LincoPlex system and the human cytokine/chemokine full panel (panel 1, Millipore)
- No notable differences between placebo and azeliragon at baseline
- Statistically meaningful differences between azeliragon and placebo for changes from baseline in select inflammatory markers

Changes in Biomarker Profile Consistent with RAGE Inhibition

Biomarker	Relation to RAGE	Predicted change upon RAGE inhibition	Subjects with AD and HbA1c≥6.5
			treated with treated with AZL 5mg Placebo
TNFb	Indirect	Decrease	*
TGF-a	Indirect	Decrease	
sCD40L	Direct	Decrease	*
MIP-1b	Direct	Decrease	*
MCP-3	Indirect	Decrease	
MCP-1	Indirect	Decrease	
IL-6	Direct	Decrease	*
IL-2	Indirect	Decrease	*
IL-13	Indirect	Decrease	
IL-12p70	Direct	Decrease	*
IL-12p40	Direct	Decrease	*
IFNg	Direct	Decrease	*
GM-CSF	Indirect	Decrease	
FGF-2	Indirect	Decrease	*
*nominal p<0.05 W Results are Me		-:	100 -75 -50 -25 0 25 5 %Change from Baseline at Month 18

Biomarker Profile

Azeliragon treatment significantly decreased the following markers linked to RAGE:

- IL6
- IL12
- INFg
- CD40L
- MIP-1
- IL2
- TNFb

Each of these markers is a major player in the neuroinflammatory pathway¹

¹Based on Ingenuity software predictions

Data from the ADA-T2D Subgroup and Prediction Using Ingenuity Software Support Hypothesis that Inhibition of RAGE Could Result in Beneficial Effects

Conclusions

- Results from the post-hoc analysis of a subgroup of patients with HbA1c≥6.5% support the hypothesis that treatment with azeliragon may:
 - Improve/preserve cognition and function
 - Reduce Whole Brain and Hippocampus atrophy and ventricular enlargement
 - Preserve glucose uptake
- □ The results from the inflammatory marker analyses revealed changes consistent with RAGE inhibition, possibly indicating functional pharmacologic activity of azeliragon in this subgroup of patients
- □ Further clinical studies are necessary to confirm this hypothesis:
 - vTv is Initiating start-up activities for a study to evaluate the safety and efficacy of azeliragon in subjects with mild AD and type 2 diabetes (HbA1c ≥6.5%)
 - Part 1: Objective is to demonstrate efficacy on a cognitive endpoint and establish proof of concept
 - Part 2: To be initiated upon positive results from Part 1. Objective is to demonstrate efficacy on co-primary endpoints of cognition and function

Thank you!

We greatly appreciate all the patients, families, investigators and staff for their participation in STEADFAST